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A dynamic beam system loaded harmonically in the axial direction and constrained in the
transverse direction is modelled using different theoretical descriptions. Results from an
experimental set-up are compared to calculations using Bernoulli as well as Timoshenko
beam theories. Some results from investigations of this beam system unveiling its chaotic
nature have earlier been presented, but here the refining of Timoshenko theory is done in
order to get a better understanding of the influence of the impacts on the beam motion. The
free motion of the beam is described as a finite sum of modes, while at impact an infinite
number of modes is considered, albeit approximately. These ideas were also used for the
Bernoulli beam, but modifications will be made here to account for the modal equations of
fourth order in time for the Timoshenko beam. The investigation is complemented with new
experiments.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Systems undergoing deterministic loading and exhibiting chaotic behaviour have been
extensively studied in the literature. One example is the study made by Li et al. [1], where
chaotic regions in the parameter space for a constrained pipe conveying fluid were detected.
Mechanical oscillators with play or amplitude constraining stops are other examples of
systems with chaotic behaviour for special choices of loading parameters. Here, a study
made by Moon and Shaw [2] of a harmonically loaded non-linear beam system can be
mentioned. The clamped end of a cantilever beam was excited with different choices of the
driving frequency and load amplitude, and the non-linearity is this system arose from the
boundary condition at the free end of the cantilever beam. The tip of the beam was free to
move in one direction but encountered a stop, which pinned the tip displacement exceeded
a critical value in the other direction. Chaotic vibrations were observed both in experiments
and simulations for certain values of the loading parameters.

The object of the present study is an axially loaded beam with a one-sided constrained
lateral deflection. The load varies sinusoidally with time and the ends of the beam are
pinned such that only symmetric motions are considered. For special values of the
amplitude and frequency of the applied load, chaotic oscillations have been detected, both
experimentally and in simulations [3].

Earlier comparisons between experimental results and computer simulations of the beam
motion showed good qualitative correspondence [4]. The quantitative correspondence,
however, was not quite good, particularly as regards the duration of time spent in contact
with the constraint. The simulated contact times were always shorter, regardless of the
model used to describe the impacts.
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In this work, the effect of refining the beam model from Bernoulli to Timoshenko theory
is investigated. Timoshenko beam theory has been used earlier in stability analysis (e.g.
references [5, 6]. In those studies, the reason for using the refined theory was mainly not to
restrict the results to long slender beams. When using Timoshenko theory, transverse shear
deformations are also accounted for and thereby the results are also valid for thick beams.
The reason for using Timoshenko theory in this study is quite different. Following Fung
[7], the phase velocities for the higher order deflection modes are lower when the theory is
refined. This will cause high order modes to propagate slower for the Timoshenko beam
than for the Bernoulli beam, and the extended contact times may then be expected.

More experiments have been performed using the set-up described in reference [4], and
a more systematic analysis of the results has been performed in such a way that direct
comparisons with simulations are obtained.

2 FORMULATION OF THE PROBLEM

2.1. TIMOSHENKO THEORY

A Kelvin material is chosen and if for uniaxial stress conditions, i.e., 0 = o4, it i
assumed that ¢33 = — veyq, where v is the Poisson’s ratio, then it follows from reference [8]
that the constitutive relation between the stress ¢ and strain ¢ becomes

o = E¢ + 1, (1)

where E is Young’s modulus and # is a viscosity parameter. In shearing, one has

t=Gr+ 2 o)
where 7 is the shear stress, 7y is the shear strain and G is the shear modulus. Following the
Timoshenko beam theory, the deformation of the beam in Figure 1 with length L, bending
stiffiness EI, shear stiffness GA and mass density p is described by the longitudinal
displacement u along the neutral axis, the transverse displacement w and the rotation of the
cross-section . Note that the co-ordinates x and y are referred to the undeformed
co-ordinate system. According to Figure 1, the transverse constraint is located at the
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Figure 1. The system under study.
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midpoint of the beam. The rotation is related to the bending moment M through

oy o4y
M= —El— —nl . 3
ox T axot ®
The rotation and the transverse displacement are coupled to the transverse shear force T via
ow G[(*w oy
T=kGA|— — k'ndA— —— . 4
<ax W) TrnAE <6x6t az> @

The factor k' is the ratio of the average shear strain over the cross-section to the maximum
shear strain at the centroid. The value of this factor is chosen differently by different authors
in the literature. For elasticity and a rectangular cross-section, Fung [7] using elementary
beam theory suggests that k' = 2/3, whereas Timoshenko et al. [9] give the value k' = 5/6.
This factor is discussed in detail by Cowper [ 10] and we shall adopt here the value k' = 5/6.
Finally, the longitudinal displacement is related to the normal force N through

ou 0*u
N=EA—+nA . 5
ax M axar ©)
The equations of motion can be derived from Figure 2. In the transverse direction,
0w oT
PA—Z =q+ 2, (6)
ot ox
where q is the loading per unit length. Likewise, the longitudinal direction yields
0*u ON
— =— 7
o ox’ @
whereas for the rotation it follows that
o*y oM ow
—=——+T—-N—. 8
o™ T ox ®
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Figure 2. Loading of beam with length dx and corresponding deformations. The directions of the normal force
N, the shear force T and the bending moment M all refer to an undeformed co-ordinate system.
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The axial force P, as shown in Figure 1, is measured positive when it is compressive and is
assumed to oscillate harmonically with time, P = Pycosvt. In this study, the period of
oscillation, 27x/v, is at least one order of magnitude higher than the time of longitudinal
waves to travel the length of the beam, L/,/E/p, and then, if the damping in equation (5) is
neglected, then the axial force can be assumed to be independent of the co-ordinate
x running along the beam axis, i.e., N(x, t) = — P, cos vt. The longitudinal motion is then
given by the steady state solution

Py
u(x,t)=—x EA cos Vt, 9)
where the boundary condition u = 0 at x = 0 is taken into account.

It will be assumed to be a homogeneous material and that the cross-section is constant
along the beam. Moreover, to simplify the analysis, we shall ignore the viscous term in the
expression for the shear force T in equation (4), which certainly is of only minor influence.
From equations (4) and (6), it is then possible to find an expression for dyr/0x. With
expressions (3) and (4) inserted into equation (8) and then differentiation with respect to x it
is possible to eliminate the rotation and obtain the following equation, which is fifth order
in time and space for the transverse motion:

1 o*w n w <1 1> o*w 1 *w n 0w d*w Py d*w

cocg ot Ech ox*or? 0x?0t*>  ¢R* 0r*  Eox*ot  ox*  EI 0x*

=+ cos vt
RS

1 102 1 1 190° 03
¢, L g 112 n 04 (10)

where the parameters ¢y, co and R are defined as

E k'G I
= [= = 2= R= |—. 11
CO \/;a CQ p ) \/; ( )

Bearing the boundary conditions at the ends of the beam in mind, it is obvious that the
deflection can be written in the form of a Fourier sine series with f; () denoting the Fourier
coefficients:

iTx

fi(t) sin I (12)

s

w(x, t) =

i=1

Inserting into equation (10), multiplying by sin ( jrx/L), wherej = 1,2, ... and integrating
over the length of the beam gives
1 4%,  n j*r*d¥f; N [j2n2<1 1 > 1 ]dzfj n jtn* df;

cheg d*  Ecy L* dr? L2\ g c3R?

22 /22 L A2 .
jen® (j*n® Py 2 1 0%q . jmx
+— |57 ——cosvt)sz—pAL [—cécé N sin——dx

1-22 La ; 1 1~22 L ;
S [ i s (et T [ s o

coR* g L) Jo

(R ) | (13

d? "E L* dr
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Thus, the equations determining the Fourier coefficients, one for each mode shape, are
decoupled and can be solved separately. Notice that the terms originally containing second
order derivatives of the transverse load with respect to the co-ordinate along the beam,
0%q/0x* and 0¢/0x>0t, have been partially integrated twice under the assumption of ¢ being
a symmetric function over the length of the beam L, i.e., g(x =0) = g(x = L) = ¢qo and
0q/dt(x = 0) = 0q/0t (x = L) = dq,/0t.

2.2. BERNOULLI THEORY

When using Bernoulli beam theory and ignoring the rotational inertia effect, but
otherwise assuming the same material behaviour as before, equation (1), the resulting
partial differential equation becomes

0*w 0*w ow 0w

EI(? 4+P06 cosvt—i—nla 46t+pA =4

(14)
Following the same procedure as for the Timoshenko beam, the result after Fourier
expansion, multiplication by sinjnx/L and integration over the length of the beam gives

2. s g, 44 2 2 > (L )
it df; jint o jm . jmx
pA dtzj'i';’]IFd_;"r(EIF—FP0COSVI>Lzsz QSIHde. (15)

Equation (15) denotes the Fourier coefficients for the Bernoulli beam and corresponds to
equation (13) for the Timoshenko beam.

2.3. MODELLING THE IMPACTS

The influence of the impacts on the transverse deflection is contained in the external
transverse load, g(x, t). For simplicity and according to Figure 1, the impact is considered as
a point load situated at the midpoint of the beam, x = L/2, and a distance, 4, from the rest
position of the beam, i.e.,

_[8(x =50 if w(L/2,1) = 4,
qx. 1) = {0 it w(L/2, 1) < 4. (16)

Here, d(x) is the Dirac delta function, and Q denotes the force acting at the midpoint of
the beam. During impact, equation (13) becomes

d4f~ n ]277,'2 d3f de
Wt E et o+ b +x dtzj
44 222 /22
n Jjmtdf; jm* (j'nt Po
+E(,%C(227d—t]+C%Cé?<7—ECOSV[>L (17)

- 2 [d*Q  ,nj*n*dQ j*n? ,
:(—1)U 1)/2pAL|:dt +c EFE‘F —+C(2)? Q| Jodd.

Here, the derivations of the influence of the impacts are presented only for the Timoshenko
beam, but the procedure for the Bernoulli beam is analogous starting from equation (15)
instead of equation (13), this can be followed in reference [3].
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No antisymmetric mode (j = 2,4, ...) can be invoked by the impacts because the
right-hand side of equation (18) is zero for the antisymmetric modes, i.e., the modes with
even mode numbers. It then follows that there will never be any antisymmetric mode
present in motion if the initial condition contains only symmetric modes. In the following,
only symmetrical modes will be considered, i.e., j is odd.

Since the wall is considered to be infinitely stiff, the deflection condition at impact is that
the total deflection equals the distance between the undeflected beam midpoint and the
point constraint, i.e.,

fi—fat+fs— =X (=1D)I"D2f=4, jodd. (18)

j=1

In practice, there is always an upper bound of how many modes can be taken into
account in the numerical calculations. Let us consider n to be the highest mode number
taken into account for the free motion. At impact it is possible to introduce some
simplifications for the mode equations with mode numbers j > n. If n is large enough, then
the first simplification of equation (18) is to ignore the cos vt term since j>n?/L? becomes
much greater than the term Py/EI for j > n and n sufficiently large. This simplification can
also be motivated by comparing the load amplitude P,, which in both the simulations and
the experiments is in the range of the first buckling load. £, ;, with the buckling load for the
mode j, P. ;. From reference [11]

Pej=j*Pey (19)

which ensures that the load amplitude in the experiments and simulations is much lower
than the critical load for the modes with mode numbers j > n.

The next simplification is based on the fact that the contact time is much larger than the
period of the mode number n. Due to damping, the transients from the homogeneous
solution of equation (18) are then damped out and the fourth, third, second and first order
time derivatives on the left-hand side of equation (18) can then be neglected for j > n. One
can therefore conclude that for j > n and n sufficiently large, equation (18) will only have the
particular solution

1 2L [ 1d%0 72 1dQ 1c¢g 1cgn?
fJ:( )(J 1)/ZCOCQpA7I |: dt2 +C(2) _-_2_"1‘ ]_4?_{_]_2 12 Q 5

jodd and j>n. (20)

The infinite sum in the deflection condition in equation (18) can then be divided into two
parts, i.e.,

n

Z( )u 1)/2f + Z (J 1)/2f =4, (21)

j=1 j=n+2
where the second sum can now be expressed in terms of the particular solutions of equation
(20) for the modes with mode number j > n, i.e.,

" . 1 213 (d2Q
et £ D)

j=n+2 o cp pAT
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The infinite sums in equation (22) are determined through

7'54

1 7'52 o0
B ; 2k—1)4 96

0 0 1
“LEmo s ;_“

where j is odd but k denotes all integers. The deflection condition at contact in equation (21)
can now be written as

d? d " .
.24, %C co—ci(a- ¥ (oo, 23)
dt dt i
with the constants C,, C,, C; and C, given by
TE4 n 1 7 TEZ 7'[2 n 1
Ci=—— =, Cr=ct—5|—— = |
' 6 jgd4 P 2<8 JZ1J2>
2 4 n 2.2 2 n 4
co (™ 1 con” (m 1 pAn* ,
Ci=—===Y 2 )|+—([=-> 5 Co=—"+~ . 24
3 R2<96 2 j4>+ s X ]2>’ 4=y e @4

The computation is therefore as follows. The free motion of the beam is calculated from
equation (18) with mode numbers up to and including n and the right sides of these
equations being equal to zero. An impact is then detected with the impact deflection
condition of equation (18), where only the first n modes are considered. Then, the differential
equation for Q, equation (23), is solved with the actual values of f1, f3, ..., f, determining the
right side. The solutions for Q, dQ/dt and d*>Q/dt* are now put into the modal equations for
type equation (18) and in the next time step the modal equations are solved with their right
sides differing from zero.

3. RESULTS

Results from numerical simulations as well as experiments will be presented and
compared here. The experimental set-up can be described as a horizontally oriented steel
beam with hinges at both ends. One of the hinges is connected to an electro-magnetic
vibrator and the other to a load cell. The constraint is situated at the beam midpoint,
a small distance from the undeflected beam. The deflection and the velocity of the beam
midpoint are measured by a laser displacement meter. A more detailed description of the
set-up is presented in reference [4]. The simulations are performed with the Matlab Ode
Suite [12] using Runge-Kutta methods of second order.

In Figure 3(a), a measured phase plot is presented. This phase plot can be compared with
the phase plots derived from numerical implementations of the Timoshenko beam theory,
Figure 3(b). In both simulations, the midpoint deflection and the midpoint velocity are
followed from the same initial values and over the same time span. The loading parameters
are Py =0-73 P{ and v =20 w,, where P{ is the first buckling load and w, is the first
eigenfrequency of the unconstrained beam.

The similarities of the experimental and simulated phase plots are evident. Further, it can
be concluded from Figure 3(b) that the influence from the higher order modes is damped out
during the free motion and it is sufficient to use four modes in the simulations.

Results from calculations with the two beam hypotheses are presented in Figure 4. The
midpoint deflection and the midpoint velocity are followed from the same initial values and
over the same time interval for the two simulations. There is no essential difference between
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Figure 3. Phase plots obtained from (a) experimental data and (b) Timoshenko data. The calculations are
performed with four modes for the free motion for the solid trajectory and with 10 modes for the dashed trajectory.
The damping coefficient is n = 0-00002s * E.

the two curves. Evidently, as can be seen in the following, cf., Figure 6, the two beam models
will give the same contact times so the earlier discussed problem with the simulated contact
times being too short compared to the experimental ones will remain thus when using
Timoshenko beam theory, and therefore other explanations of this phenomenon must be
sought. This is certainly surprising since the phase velocities for the higher order modes
according to reference [7] are lower for the Timoshenko beam theory than for Bernoulli
beam theory. For the Timoshenko beam theory these higher order modes will, therefore,
propagate slowly compared to Bernoulli theory and extended contact times may then be
expected. Figure 4 and, further on, Figure 6 clearly illustrate that this effect is not dominant
for the problem in question and the only remaining phenomena that is open for a more
accurate modelling is the impact event itself.

Moreover, the computation time for the Timoshenko beam turned out to be much longer
than for the Bernoulli beam. This is not surprising since the differential equations are of
fourth order for the Timoshenko beam, so the implementation includes twice as many state
variables. Furthermore, during contact, one additional differential equation of second order
for the contact force has to be solved for the Timoshenko beam.

In Figure 5, parts of the simulations presented in Figure 4 are shown in a deflection versus
time diagram. The phenomenon of multiple impacts is evident in Figure 5. A complete
impact, i.e., the process after which the beam eventually has changed its direction of motion,
consists of a series of bounces occurring very closely in time. This behaviour was also
observed in the experiments. To have a quantity by which experiments and simulations can
be compared, it turned out to be more meaningful to look at the whole impact process and
not the separate bounces. In the following comparisons, the dwell time is then defined as the
time when the midpoint deflection exceeds 0-95, cf., Figure 5. To be consistent, the value
0954 is also chosen in the experiments to define dwell time.

With this definition of the duration of an impact, a systematic investigation of the dwell
times for the two beam models has been performed. The initial deflection of the first mode
was put equal to 0954, and the initial velocity of the first mode was varied from 0-01 m/s up
to 1m/s. All other state variables are initially set to zero.
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Figure 4. The trajectory predicted by Timoshenko ( ) and Bernoulli beam theory, (- — - -). In both cases,
four modes are used for the free motion, damping coefficient = 0-00002s * E and loading parameters P, = 0-5P§
and v = 2-0w;.
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Figure 5. Time versus deflection for the beam midpoint. The deflection border of 0-954 for measuring the dwell
time is also drawn in the diagram.

The first observation made in Figure 6 in agreement with the two beam models. The jump
that occurs when the initial velocity, which is equivalent to the impact velocity, is about
0-6 m/s, where the dwell time is nearly halved, is apparent. As will be shown later on, this
jump can be explained as the limit between two different types of impact. If the velocity of
impact is higher than 0-6 m/s, then the dwell time turns out to be relatively small but the
impact is always immediately followed by another impact with a low velocity and about the
same dwell time as the first.
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Figure 6. Systematic control of dwell times. The results from the simulation of the Bernoulli beam are marked
with (), and the results of the Timoshenko beam simulation are marked with (O). The loading parameters are
Py, =0-5P§ and v = 2:0w; and the damping coefficient is 7 = 0-00002s * E in both simulations.
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Figure 7. Dwell times obtained from (a) experimental data and (b) Bernoulli data. Loading parameters are
Py =0-7P§ and v = 2:0w; and the damping coefficient in the simulation is 7 = 0-00002 = E. A single impact is
marked with (O), the first impact of a double impact is marked with (@ ) and the second one with (x).

In Figure 7(a), a series of impacts recorded experimentally is presented. During these
experiments it was observed that the impacts with short dwell times, 4-5 ms, occur very
closely in time, i.e., the beam bounced twice before leaving the constraint. It then seems
natural to introduce the definition of a double impact: if the beam did not pass the
undeflected position between two impacts, then the two impacts were defined as one double
impact. In Figure 7(a), a single impact is marked with (O), the first bounce of a double
impact is marked with (@ ) and the second one with ( x). It can also be noted that the sum of
the dwell times for a complete double impact is about the same as for a single impact,
8-9 ms. There were no triple or higher order impacts recorded.
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A series of impacts was recorded during a simulation of the Bernoulli beam (Figure 7(b))
with equivalent markings for comparison with the experimental data in Figure 7(a). No
impacts of order higher than two were observed in this simulation. A complete impact,
single or the sum of a double, is measured to about 8 ms and this is in good agreement with
the experiments. Also, the minimum level of approximately 0-5-0-6 m/s for which double
impacts occur is observed both experimentally and in simulations.

It can be noted here that if the deflection limit for defining impact, instead was chosen as,
e.g., w = 0984, triple or even impact processes consisting of four bounces is observed both
in the simulations and in the experiment. Then, the corresponding diagrams to Figure 7
would show one level of dwell time equal to one-third of the dwell time of a complete impact
process and even a level at one-fourth in the presence of four bounces.

4. CONCLUSIONS

One of the reasons for using a Timoshenko beam theory was the expectation of
improving the agreement between simulated and observed dwell times. However, it turned
out that the effect of the lower-phase velocities of the higher order modes of the Timoshenko
beam in the present case is quite small that it is hardly worth the extra computation time to
introduce the Timoshenko beam theory. In the problem considered, the only remaining
phenomena that is open for a more accurate modelling is the impact event itself and therefore
a more refined impact model than the one presented here seems worthwhile to pursue.

However, in this presentation, an approach is tested where an impact is interpreted as
a process consisting of a series of two, three or even more bounces between the beam and the
constraint before the process is regarded as completed. This impact process is also
recognized in experiments and the time of duration of this process can be measured and
compared to simulations. An excellent agreement between simulations and experimental
results has then been obtained.
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